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Note

A Problem on Approximation by Fourier Sums
with Monotone Coefficients
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Let C 2rr be the class of real, continuous functions with period 2n, E,;Cf)
is the best approximation to f(x) EO C lrr by trigonometric polynomials of
degree ~n, and 51/U; x) is the nth partial sum of the Fourier series ofj(x),
Write

!II Ii = max If(x)l·
I < X <' f

It is well known that

Iif- 51/(/)11 = O(log(n + 1) E,;Cf)), (I)

and, in general, the factor 10g(n + I) in (I) cannot bc improved. Howevcr,
one may hope that, fo;, fix) in some subclass of C2n , a better estimate
holds, e,g"

Ilf- 51/(/)11 = O(E,;(/)), (2)

Rccently, Professor Tingfan Xie [I] asked

Prohlem 1. Does there cxist a positive constant M such that, for every
function f EO C 2rr with positive Fourier coefficients,

Ilf- 51/(/)11 ~ ME,;(f) (11=1,2, ... )'1

Later, in a seminar, he asked

Prohlem 2. Docs there exist a positive constant M such that for every
function f EO ('2" with monotonc Fourier coefficients,

(n = 1,2, ... )')

* Present address: Department of Mathematics, Statistics and Computing Science, Dalhousie
University, Halifax, NS, Canada B3H 3J5.

274
0021-9045/90 HOO
Copynght (' 1990 by Acadcnm: Press. lilt:.
All rights or rcrroduction In any f(lrm n:served



APPROXIMATION BY FOURIER SUMS 275

Some time ago, the author constructed an example showing that the
answer to Problem I is negative. But the corresponding Fourier series was
lacunary, so it could not apply to Problem 2. In the present paper we give
a carefully constructed counterexample which indicates that the answer to
Problem 2 is still negative.

THEOREM. There exists a function f(x) E C 2n with strongly monotone
Fourier coefficients such that

-r Ilf-S,,(f)11 >0
"l~£ (log n) E/~(f) .

A strongly monotone sequence (P" is one for which all ({J" > °and n({J"

decreases. It is evident that if ({J" is strongly monotone, then it decreases.

Proof' of the Theorem. Let

for 2k + 1~ n = 2k
-,. j ~ 2k + 1, k = 0, 1, 2, ... , n = 1,2, ....

Obviously a,,::?°for all n. Furthermore,

2k + j 2k + j + 1
na = ----,-..,-->, = (n + l)a -+ 1

" 2k ) 2k -(j + 1) " .

for j= 1,2, ... , 2k -I, k= I, 2, ... , and

for k = 0, 1, 2, ... ;

hence, na" decreases.
Now define

. 1 2' cos(2 k +j)x
f(x) = I a" cos nx = I yI . .

,,~2 k~O I 1 J

It is not difficult to see that

On the other hand



276

By the well-known inequality

SONG 1'1'-1(; ZHOl'

it follows that

III sin jx ,
I -,'- I ~ :I " IT

I / I,
for all 111,

Therefore

/ I /
Ei,(f) = () (20)'

Thus the theorem is proved,
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