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Let C,, be the class of real, continuous functions with period 27. EX(f)
1s the best approximation to f(x)e C,, by trigonometric polynomials of
degree <n, and S,(f, x) is the nth partial sum of the Fourier series of f(x).
Write

1= max ()]
It is well known that
Lf =S8, =0og(n+1)EX(f)), (n

and, in general, the factor log(n + 1) in (1) cannot be improved. However,
one may hope that, for f(x) in some subclass of C,,, a better estimate
holds, e.g.,

If= S =OEF(f)). (2)
Recently, Professor Tingfan Xie [ 1] asked

Problem 1. Does there ¢xist a positive constant M such that, for every
function fe C,, with positive Fourier coefficients,

=S (M<MEY/) (n=1,2,..)?
Later, in a seminar, he asked
Problem 2. Does there exist a positive constant M such that for every
function fe C,, with monotone Fourier coefficients,
= SN SMEF(S) (n=1,2,.)7
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Some time ago, the author constructed an example showing that the
answer to Problem 1 is negative. But the corresponding Fourier series was
lacunary, so it could not apply to Problem 2. In the present paper we give
a carefully constructed counterexample which indicates that the answer to
Problem 2 is still negative.

THEOREM. There exists a function f(x)e C,, with strongly monotone
Fourier coefficients such that

— S =S N
N Cogm Exi°

A strongly monotone sequence ¢, is one for which all ¢,>0 and ne,
decreases. It is evident that if ¢, is strongly monotone, then it decreases.
Proof of the Theorem. Let
ka1

a,=2 *j° for 2, +1<n=2"j<2*" L k=0,1,2, ... n=1,2, ..

n

Obviously «, >0 for all n. Furthermore,

24 254 +1

nan zk-/ >2k»(/+1) (’7+ )an%l
for j=1,2,..,2—1, k=12, ., and
2A+1 1 2/\f1
254 Vs, = e <2y for k=012 .

2(k+1) 2k +A2A\

hence, na, decreases.
Now define
cos(2* + j)x

flx)= Z a, cos nx = Z i

n=2 /\—0 i1 /

It is not difficult to see that

| r—

. , i ] 2 |
SU'-SzA(A/)H=_f(0)*53k(.fs0)=?z '+O<F>

~

j= 1

On the other hand

1 2 cos(2* /)x| [sin2"x| | Z sm;x
“f S’A/")_?’Z i (‘g DY Z J
i=1 - ! “
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By the well-known inequality

RINEE 4 for all m,

it follows that

Therefore

™ =S,

0.
" 1m’ (log n) E,’,"(,/')>

Thus the theorem is proved.
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